
myHadoop - Hadoop-on-Demand on Traditional HPC
Resources

Sriram Krishnan
San Diego Supercomputer

Center
9500 Gilman Dr MC0505

La Jolla, CA 92093-0505, USA
sriram@sdsc.edu

Mahidhar Tatineni
San Diego Supercomputer

Center
9500 Gilman Dr MC0505

La Jolla, CA 92093-0505, USA
mahidhar@sdsc.edu

Chaitanya Baru
San Diego Supercomputer

Center
9500 Gilman Dr MC0505

La Jolla, CA 92093-0505, USA
baru@sdsc.edu

ABSTRACT
Traditional High Performance Computing (HPC) resources,
such as those available on the TeraGrid, support batch job
submissions using Distributed Resource Management Sys-
tems (DRMS) like TORQUE or the Sun Grid Engine (SGE).
For large-scale data intensive computing, programming para-
digms such as MapReduce are becoming popular. A grow-
ing number of codes in scientific domains such as Bioinfor-
matics and Geosciences are being written using open source
MapReduce tools such as Apache Hadoop. It has proven
to be a challenge for Hadoop to co-exist with existing HPC
resource management systems, since both provide their own
job submissions and management, and because each system
is designed to have complete control over its resources. Fur-
thermore, Hadoop uses a shared-nothing style architecture,
whereas most HPC resources employ a shared-disk setup.
In this paper, we describe myHadoop, a framework for con-
figuring Hadoop on-demand on traditional HPC resources,
using standard batch scheduling systems. With myHadoop,
users can develop and run Hadoop codes on HPC resources,
without requiring root-level privileges. Here, we describe the
architecture of myHadoop, and evaluate its performance for
a few sample, scientific use-case scenarios. myHadoop is
open source, and available for download on SourceForge.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
batch processing systems, distributed systems
D.2.8 [Programming Techniques]: Concurrent Program-
ming—distributed programming

General Terms
Management, Performance, Design, Experimentation

Keywords
MapReduce, Hadoop, High Performance Computing, Re-
source Management, Clusters, Open Source, myHadoop

1. INTRODUCTION
Traditional High Performance Computing (HPC) resources,
such as those available on the TeraGrid [15], support batch
job submissions using Distributed Resource Management
Systems (DRMS) such as TORQUE [9] (also known by its
historical name Portable Batch System - PBS), or the Sun
Grid Engine (SGE - [7]). These systems are put in place by
system administrators on these resources to enable submis-
sion, tracking, and management of batched, non-interactive
jobs, such that it maximizes the overall utilization of the
system, and that it enables sharing of the resources among
many users. Users typically do not have a choice of batch
systems to use on a particular resource - they simply use
the interfaces provided by the batch systems that are made
available on those resources.

The MapReduce programming model [17], introduced by
Google, has become popular over the past few years as an al-
ternative model for data parallel programming. Apart from
Google’s proprietary implementation of MapReduce, there
are several popular open source implementations available
such as Apache Hadoop MapReduce [11] and Disco [16].
MapReduce technologies have also been adopted by a grow-
ing number of groups in industry (e.g., Facebook [27], and
Yahoo [21]). In academia, researchers are exploring the use
of these paradigms for scientific computing, for example,
through the Cluster Exploratory (CluE) program, funded
by the National Science Foundation (NSF).

A growing number of codes in scientific domains such as
Bioinformatics ([24], [20]) and Geosciences [22] are being
written using open source MapReduce tools such as Apache
Hadoop. In the past, these users have had a hard time run-
ning their Hadoop codes on traditional HPC systems that
they have access to. This is because it has proven hard
for Hadoop to co-exist with existing HPC resource manage-
ment systems, since Hadoop provides its own scheduling,
and manages its own job and task submissions, and tracking.
Since both systems are designed to have complete control
over the resources that they manage, it is a challenge to en-
able Hadoop to co-exist with traditional batch systems such
that users may run Hadoop jobs on these resources. Fur-
thermore, Hadoop uses a shared-nothing architecture [30],
whereas traditional HPC resources typically use a shared-
disk architecture, with the help of high performance parallel
file systems. Due to these challenges, HPC users have been
left with no option other than to procure a physical clus-

ter and manage and maintain their own Hadoop instances.
Some users now have access to new resources such as Ama-
zon’s Elastic MapReduce [1] or Magellan [3] to run their
Hadoop jobs. However, the majority of HPC users only
have access to traditional HPC-style resources, such as the
ones provided by the TeraGrid or other local supercomput-
ing facilities.

In this paper, we present myHadoop, which is a simple frame-
work for Hadoop on-demand on traditional HPC resources,
using standard batch processing systems such as TORQUE
or SGE. With the help of myHadoop, users do not need
dedicated clusters to run their jobs - instead, they can con-
figure Hadoop clusters on-demand by requesting resources
via TORQUE or SGE, and then configuring the Hadoop
environment based on the set of resources provided. We
describe the architecture of myHadoop, and evaluate the
performance overhead of using such a system with a few sci-
entific use-case scenarios. myHadoop is open source, and
available for download via SourceForge [4].

The key contributions of our work are as follows:

(i) An open-source framework for leveraging traditional batch
systems to run Hadoop jobs on HPC resources,

(ii) A detailed recipe for implementing a ”shared-nothing”
system such as Hadoop on shared HPC resources, which
may be useful for other similar systems, e.g. Disco [16], and

(iii) An evaluation of the performance overheads of running
a shared-nothing infrastructure on such resources.

The rest of the paper is organized as follows. In Section 2,
we describe the traditional shared HPC architectures, and
shared-nothing architectures used by Apache Hadoop. We
discuss the challenges of running MapReduce-style applica-
tions on shared HPC resources. In Section 3, we discuss the
myHadoop implementation details. In Section 4, we evalu-
ate the performance implications of using myHadoop with
the help of two use cases. We present related work in Section
5, and our conclusions and future work in Section 6.

2. ARCHITECTURE OVERVIEW
The system architecture for shared-nothing frameworks such
as Apache Hadoop is different from that of the traditional
shared HPC resources, as shown in Figure 1.

We observe that most HPC resources are composed of a set
of powerful compute nodes with minimal local storage (e.g.
[8], [5], etc). The compute nodes are themselves connected
to each other using a high-speed network interconnect such
as Gigabit Ethernet, Myrinet [13] or Infiniband [26]. They
are typically connected to a high performance parallel file
system, such as Lustre [29] or IBM’s General Parallel File
System (GPFS - [28]). Access to the compute nodes is via
batch systems such as TORQUE/PBS or SGE.

Shared-nothing frameworks, on the other hand, are designed
for use in large clusters of commodity PCs connected to-
gether with switched commodity networking hardware, with
storage directly attached to the individual machines. Thus,
every machine is both a data and a compute node. A dis-

Figure 1: HPC versus shared-nothing architectures

tributed file system is implemented on top of the data nodes.
e.g. the Google File System (GFS - [19]), or the Hadoop
Distributed File System (HDFS - [14]). Compute tasks are
spawned to maximize data locality. Such systems have been
documented to scale to thousands of nodes effectively ([17],
[27], [21]).

The main challenges in enabling Hadoop jobs to run on
shared HPC resources are:

(i) Enabling the resource management functions of Hadoop
to co-exist with the native batch resource managers in some
fashion, and

(ii) Implementing a shared-nothing infrastructure on top
of the traditional HPC architectures, which are typically
shared-disk systems.

Hadoop uses a shared-nothing architecture, but it designates
one node as the master, and the rest as the slaves. On the
master, Hadoop runs the HDFS NameNode daemon, which
is the master server that manages the file system namespace
and regulates access to files by clients, and the JobTracker
daemon, which is responsible for scheduling the jobs’ compo-
nent tasks on the slaves, monitoring them and re-executing
the failed tasks. The slave nodes host the HDFS DataNode
daemons, which manage storage attached to the nodes, and
the MapReduce TaskTracker daemons, which execute the
tasks as directed by the master.

Figure 2 shows the overall architecture of myHadoop on tra-
ditional HPC resources. In summary, a Hadoop cluster is al-
located on-demand by first requesting a set of nodes from the
native resource management system, designating the master
and the slave nodes, and configuring and launching the ap-
propriate Hadoop daemons on the allocated nodes. The user
can then run their Hadoop jobs, after which the Hadoop
framework is torn down by stopping all the daemons and
de-allocating the resources.

Figure 2: myHadoop architecture

myHadoop can be configured in two modes - non-persistent
and persistent. In the non-persistent mode, the Hadoop dae-
mons are configured to use local storage, if available, for
the distributed file system implementation. This mode may
have two potential problems - first, sufficient local storage
may not be available, and second, the results from the non-
persistent runs will be unavailable after the Hadoop job has
completed, since the batch system cannot typically guaran-
tee that the same set of resources will be allocated for future
runs. To circumvent these concerns, one can use the persis-
tent mode where the distributed file system is hosted on the
shared file system, such as Lustre or GPFS.

3. IMPLEMENTATION DETAILS
The requirements for myHadoop can be listed as follows:

(i) Enabling execution of Hadoop jobs on shared HPC re-
sources via traditional batch processing systems,

(ii) Working with a variety of batch scheduling systems,

(iii) Allowing users to run Hadoop jobs without needing
root-level access,

(iv) Enabling multiple users to simultaneously execute Hadoop
jobs on the shared resource (this doesn’t imply that they
should use the same Hadoop instance - only that the Hadoop
configurations for one user must not interfere with the con-
figuration of another), and

(v) Allowing users to either run a fresh Hadoop instance
each time (non-persistent mode), or store HDFS state for
future runs (persistent mode).

myHadoop has been implemented to work with Apache Had-
oop (version 0.20.2), and to satisfy the above requirements.
The key idea behind the implementation is that different
(site-specific) configurations for Hadoop can be generated for
different users, which can then be used by the users to run
personal instances of Hadoop in regular-user mode, with-
out needing any system-wide configuration changes or root
privileges. Site-specific configuration files that are relevant

Figure 3: myHadoop configuration workflow

to myHadoop include:

(i) masters: This specifies the host name of the node on the
cluster that serves as the master. This node hosts the HDFS
NameNode, and the MapReduce JobTracker daemons.

(ii) slaves: This lists the host names for the compute nodes
on the cluster. The slave nodes host the HDFS DataNode
daemons, and the MapReduce TaskTracker daemons.

(iii) core-site.xml: The core site configuration includes im-
portant parameters such as the location of the HDFS (HAD-
OOP DATA DIR) on every node, and the URI for the HDFS
server (which includes the host and port of the master). It
also includes additional tuning parameters for the size of
the read/write buffers, the size of the in-memory file system
used to merge map outputs, and the memory limit used for
sorting data.

(iv) hdfs-site.xml: The HDFS site configuration includes pa-
rameters for configuring the distributed file system, such as
the number of replications, the HDFS block size, and the
number of DataNode handlers to serve block requests.

(v) mapred-site.xml: The MapReduce site configuration con-
sists of the host and port for the JobTracker (on the mas-
ter), the number of parallel copies that can be run by the
Reducers, the number of map and reduce tasks to run simul-
taneously (to leverage multiple cores), and the JAVA OPTS
for the child JVMs of the mappers and reducers.

(vi) hadoop-env.sh: This script configures the environment
for the Hadoop daemons. Important parameters including
the location of the log directory, the Hadoop heap size, and
JVM parameters for garbage collection and heap manage-
ment.

Figure 3 describes the myHadoop workflow for configura-
tion of a Hadoop cluster on-demand for every user. To
use myHadoop, a user writes scripts for the batch system

being used by their particular resource. For the purposes
of this discussion, let us assume that the resource uses the
TORQUE Resource Manager (also known as PBS). Note
that the following description is equally valid for other re-
source managers, such as SGE.

In this case, a user writes a regular PBS script to run their
Hadoop job. From within the PBS script, the user invokes
myHadoop scripts for configuration of a Hadoop cluster.
When the Hadoop configuration script is invoked, it sets up
all the configuration files for a personal Hadoop instance for
a user in a separate directory (called HADOOP CONF DIR),
which can then be used to bootstrap all the Hadoop dae-
mons. As command-line arguments to this script, the user
passes the number of Hadoop nodes to configure (which is
the same as the number of nodes requested from PBS), the
HADOOP CONF DIR to generate the configuration files
in, and whether Hadoop should be configured in persistent
or non-persistent mode. When this script is invoked, my-
Hadoop looks up the host names of the resources allocated
to it by PBS, using the PBS NODEFILE. It picks the first
resource on the list as the master, and all of the resources as
slaves. It updates the masters and slaves files accordingly,
and also the mapred-site.xml and core-site.xml, which con-
tain the host names for the HDFS NameNode and MapRe-
duce JobTracker respectively. It then reads the location of
the HADOOP DATA DIR from its set of pre-defined prop-
erties, and updates the core-site.xml. It then updates all
the tuning parameters based on the site specific configura-
tion files, and writes out all the relevant configuration files
into the HADOOP CONF DIR.

If a user wants to run Hadoop in regular (or non-persistent)
mode, then myHadoop creates the HADOOP DATA DIR
on all the nodes, and HDFS can then be formatted. If a user
wants to run Hadoop in persistent mode, then myHadoop
creates symbolic links from the HADOOP DATA DIR on
each individual node to the location on the shared file system
to be used to host the HDFS. For instance, a symbolic link
is created from HADOOP DATA DIR to BASE DIR/$i for
every compute node $i.

The myHadoop workflow from a user’s perspective is shown
in Figure 4. As described above, a user writes a PBS script
to request the required number of resources. Then the user
configures the site-specific parameters using the myHadoop
configuration scripts. Then, using the configuration files
generated in the HADOOP CONF DIR, the user formats
HDFS (optional in persistent mode, mandatory in non-persistent
mode) and starts the Hadoop daemons. The user then stages
the required input files into HDFS using Hadoop commands,
and is now ready to run her Hadoop jobs. Once the Hadoop
jobs are finished, the results can be staged back out from
HDFS. This step is necessary in the non-persistent mode,
because the output files are distributed across the compute
nodes, and there is no guarantee that this user will be al-
located the exact same set of nodes in the future by PBS.
Thus, all results must be staged out before the resources
are de-allocated. However, this step is not necessary in the
persistent mode since the results will be available on the
shared file system even after the PBS job has completed.
Finally, the user shuts down all Hadoop daemons and exits
from PBS.

Figure 4: myHadoop from a user’s perspective

Thus, myHadoop enables running Hadoop jobs on HPC re-
sources using standard batch processing systems. It is pos-
sible that a similar approach could be used to implement
other shared-nothing frameworks, such as Disco [16], on tra-
ditional HPC resources.

4. PERFORMANCE EVALUATION
As discussed before, myHadoop configures and bootstraps
execution of Hadoop daemons prior to the execution of Hadoop
jobs, and performs cleanup after job execution is complete.
Hence, there is certainly some overhead involved in the over-
all execution time of the Hadoop job. The overheads are
different for the persistent and non-persistent modes.

For the non-persistent mode, the overheads include the con-
figuration (generation of site specific configuration files, cre-
ation of HDFS data directories, etc), staging input data
into HDFS, staging the results back to persistent storage,
and shutting down and cleaning up all the Hadoop dae-
mons. For the non-persistent mode, configuration and shut-
down are the only true overheads. Assuming that the data
are already stored and persisted in HDFS, then the initial
load times can be amortized over the overall lifetime of the
project. Exporting data from HDFS to a regular Unix file
system may sometimes be necessary even in persistent mode,
in the cases where the results need to be shared with other
non-Hadoop applications. In this case, staging outputs from
HDFS may be considered as an overhead. Using two ex-
amples, we evaluate the performance of myHadoop and its
associated overheads.

Note that the purpose of our experiments is just to mea-
sure the performance implications of using myHadoop, and
not to extensively study the performance characteristics of
the applications themselves. To help illustrate the effects
of running shared-nothing Hadoop jobs on typical shared
HPC resources, we have chosen two classes of applications,
(i) Hadoop-Blast ([6], [20]), which is compute-intensive and
uses only a modest amount of data, and (ii) a Hadoop-based

Figure 5: List of Hadoop tuning parameters

sub-selection of high-resolution topographic data sets from
the OpenTopography project ([23]), which is highly data-
intensive.

4.1 Environment Overview
All of our experiments were run on the Triton Compute Clus-
ter (TCC) at the San Diego Supercomputer Center. The
cluster features Appro gB222X Blade Server nodes with dual
quad-core Intel Xeon E5530 processors with Intel Microar-
chitecture Nehalem, running at 2.40 GHz. Each of the 256
nodes has 24 gigabytes of memory and an eight-megabyte
cache. Each node has a 10-gigabit Myrinet connection, giv-
ing the system a total bandwidth capacity of 256 gigabytes
per second. Triton uses the TORQUE Resource Manager,
with the Moab Workload Manager to manage job queues.

We use Apache Hadoop version 0.20.2 for our experiments.
The tuning parameters used for our experiments are shown
in Figure 5. These are pre-configured for the cluster by the
system administrators via myHadoop. Users can optionally
update the parameters for their runs - however, it is not rec-
ommended that the users update their configurations unless
they are extremely familiar with Hadoop administration. In
general, we have found that query performance improves
with replication (e.g. with dfs replication = 2), with only
a minimal penalty during data load for the non-persistent
mode.

For the persistent mode, we use the Triton Data Oasis re-
source, which is designed as an extremely large scale storage
system, having two-to-four petabytes of total disk capacity
when fully deployed. The current environment includes a
set of Lustre-based Parallel File System [29] resources sup-
porting about 250 terabytes of usable storage space. Data
Oasis is connected to the cluster nodes via 10-gigabit Eth-
ernet links. For the non-persistent mode, we use local disk
on the individual cluster nodes to host HDFS.

4.2 Hadoop-Blast
The Basic Local Alignment Search Tool (BLAST) is a pop-
ular Bioinformatics family of programs that finds regions of

Figure 6: Hadoop-Blast using myHadoop

local similarity between sequences [10]. The program com-
pares nucleotide or protein sequences to sequence databases
and calculates the statistical significance of matches. BLAST
can be used to infer functional and evolutionary relation-
ships between sequences as well as help identify members of
gene families. Hadoop-Blast [6] is a MapReduce-based tool
which lets a user run the Blast programs to compare a set
of input query sequences against standard databases. The
implementation is quite straightforward - for every input file
(query sequence), Hadoop-Blast spawns a new map task to
execute the appropriate Blast program, with the user speci-
fied parameters. An output file is created for each map task
with the results of the Blast run. There is no need for a
reduce task in this workflow.

For our experiments, we run blastx, which is one of the avail-
able Blast programs that compares the six-frame conceptual
translation products of a nucleotide query sequence (both
strands) against a protein sequence database. As inputs,
we use 128 query sequences of equal length (around 70K
each), which are compared against the nr peptide sequence
database (around 200MB in size). Figure 6 shows the per-
formance for the various steps of the execution. The y-axis
(Execution Time) is in log-scale.

As seen in the performance graphs, the time required to
configure a Hadoop cluster using myHadoop configuration
scripts is between 8 to 15 seconds for clusters varying from
N=4 to 32 nodes. In the non-persistent mode, all the input
sequences and the reference database need to be staged in -
this step is not necessary for the persistent mode. However,
since the amount of data to be staged is in the order of a
few hundreds of MB, data stage-in accounts for an overhead
of less than 10 seconds. The blastx runs themselves are

computationally intensive, and scale pretty well with the
number of nodes. The total execution time varies from a
few hundreds of seconds for 32 nodes, to around 1000s for 4
nodes. Staging outputs takes less than 10 seconds, because
of the modest amount of data to be staged out. Shutdowns
are also of the order of a few seconds. In summary, the
overheads are minimal for fewer nodes (around 2% for 4
nodes in the non-persistent mode). They are greater for
larger number of nodes (around 20% for 32 nodes in non-
persistent mode), however, since increasing the number of
nodes greatly reduces the query time, the overall execution
time is greatly reduced in spite of the increased overhead in
configuring, bootstrapping, and tearing down the Hadoop
cluster.

Other interesting observations from the graphs are as fol-
lows. The query execution time for the non-persistent mode,
which uses local disk, is observed to be faster than the per-
sistent mode, which uses the Lustre file system. We believe
that this is because Lustre is designed for large sequential IO
workloads, and not for providing access to a large number
of smaller files. Since the data sizes are not very large, the
use of Lustre to host the HDFS causes a drop in the per-
formance for this experiment. Next, the configuration and
shutdown process for the persistent version is a few seconds
faster than the non-persistent version. This is because the
HDFS doesn’t have to be formatted during configuration,
and all the HDFS data doesn’t have to be cleaned up in the
shutdown process for this mode. However, the difference is
an insignificant percentage of the overall execution time.

In summary, Hadoop-Blast is an excellent candidate for the
use of myHadoop in non-persistent mode. The use of persis-
tent mode does not provide any greater benefit - in fact, it
only acts as a detriment. The key characteristics of Hadoop-
Blast that cause this behavior are that it is a compute-
intensive application that is embarrassingly parallel, and it
deals with only a limited amount of data - from hundreds of
megabytes to a few gigabytes. Other applications with sim-
ilar characteristics are also best served by using myHadoop
in non-persistent mode.

4.3 Hadoop Data Sub-selection
LIDAR (Light Detection and Ranging) is a remote sensing
technology that combines a high-pulse rate scanning laser
with a differential global positioning system (GPS), and a
high-precision inertial measurement instrument on an air-
craft to record dense measurements of the position of the
ground, overlying vegetation, and built features. Firing up
to several hundred thousand pulses per second, LIDAR in-
struments can acquire multiple measurements of the Earth’s
surface per square meter over thousands of square kilome-
ters. The resulting data set, a collection of measurements in
geo-referenced X, Y, Z coordinate space known as a ”point
cloud”, provides a 3- dimensional representation of natural
and anthropogenic features at fine resolution over large spa-
tial extents. The OpenTopography facility at SDSC provides
online access to terabytes of such data, along with processing
tools, and other derivative products.

The initial step in every LIDAR workflow is the sub-selection
of points given a bounding box that covers a region of in-
terest. Once the data is selected, users typically compute

Figure 7: Hadoop implementation of bounding box-
based point cloud sub-selection

Digital Elevation Models (DEM) to generate a digital con-
tinuous representation of the landscape. The DEMs can
then be used for a range of scientific and engineering appli-
cations, including hydrological modeling, terrain analysis,
and infrastructure design. We are investigating the use of
MapReduce technologies to implement the entire workflow
[22]. For this experiment, we focus on the initial step of
the workflow, which is bounding box-based point cloud sub-
selection. Figure 7 shows the MapReduce implementation
of the bounding box sub-selection using Hadoop. The sub-
selection is done in the map phase - no reduce tasks are
necessary.

Figure 8 shows the performance of the data sub-selection
using myHadoop in both the non-persistent and persistent
modes, for data sizes from 1GB to 100GB, using 4 and 32
nodes. For all the runs, we are running a bounding box
query that selects around 12.5% of the loaded data. It can
be observed that data loads dominate the the execution time
for the non-persistent mode. In fact, the time taken for load-
ing data into HDFS from Lustre is observed to be an order
of magnitude greater than the queries themselves. Further-
more, staging results back is also time consuming. For the
persistent mode, data is staged in once, and the cost is amor-
tized over time - hence, we do not show the load time on our
graphs. Staging of outputs is required in the persistent mode
only if the data sub-selection is the final step of the work-
flow. In practice, this is often not the case - selected data is
typically fed into the next step of the workflow, which is the
DEM generation. However, for the sake of completeness, we
have also shown the output staging times on the graph.

An interesting observation from Figure 8 is that the query
time is actually faster in the persistent mode, which is op-
posite of what we found in Section 4.2. This is consistent
with our theory that Lustre is optimized for large sequential
IO, and that our data sizes are significantly larger in this ex-
periment. Greater performance improvement is observed for
32 nodes for the larger data sizes, whereas the performance
improvement is not as significant for the smaller data sizes.
This is to be expected since 4 nodes, tuned as per the set-
tings in Figure 5, are sufficient to handle the smaller queries.

Figure 8: Bounding box selection using myHadoop

In summary, the persistent mode of myHadoop may be a
good candidate for large data-intensive applications, such as
the usage scenario described above. For such applications,
the non-persistent mode of myHadoop provides significantly
worse performance. In the non-persistent mode, most of the
time is spent staging data in and out of Hadoop for such
use cases. The persistent mode of myHadoop is especially
suitable for workflows where results from one stage are fed to
subsequent stages, thus minimizing the staging of data back
and forth from HDFS to the native file systems provided on
the resources.

5. RELATED WORK
There has been a lot of user interest in recent times for run-
ning Hadoop jobs on traditional HPC resources. Several
groups have worked on ad-hoc scripts to solve this prob-
lem. However, there are very few efforts that have been
sufficiently documented, and publicly available. myHadoop
is very similar in concept to the description provided by the
blog article [18], where the author describes the process of
getting Hadoop to run as a batch job using PBS. However,
myHadoop is a more general and configurable framework,
which provides support for other schedulers as well, and is
freely available for download via SourceForge. Furthermore,
to our knowledge, there has not been a performance evalu-
ation of this effort that has been published.

The Apache Hadoop on Demand (HOD - [2]) is a system for
provisioning virtual Hadoop clusters over a large physical
cluster. It uses the TORQUE resource manager to do node
allocation. On the allocated nodes, it can start Hadoop

Map/Reduce and HDFS daemons. It automatically gen-
erates the appropriate configuration files for the Hadoop
daemons and client. HOD also has the capability to dis-
tribute Hadoop to the nodes in the virtual cluster that it al-
locates. HOD differs from myHadoop in the following ways.
Firstly, HOD requires the use of an external HDFS that is
statically configured. This means that the MapReduce jobs
can’t exploit any data locality, because the data is not co-
located with the map and reduce tasks. The non-persistent
mode of myHadoop enables data locality, with the HDFS
being dynamically configured to use the same nodes, with
the caveat that the data does have to be staged in and out
before and after the execution. The HDFS implementation
in the persistent mode of myHadoop is similar in concept
to the statically configured external HDFS used by HOD.
However, in the persistent mode, the HDFS in myHadoop
may be thought of as pseudo-local because there is a 1-1
mapping between every node that runs the MapReduce dae-
mons and its corresponding external HDFS data directory.
Another difference is that HOD is based on the TORQUE
resource manager - while myHadoop is not limited to just
TORQUE. Finally, HOD has some documented problems
([18]) in setting up multiple concurrent Hadoop instances
simultaneously - however, it does enable sharing of an on-
demand Hadoop instance between users. myHadoop is de-
signed to support concurrent personal instances of Hadoop
for multiple users.

CloudBatch [31] is a batch job queueing system on clouds,
which uses Hadoop to manage both regular and MapReduce
computing needs. For example, it can enable a user to run
PBS jobs via Hadoop. This implies that all the resources
use Hadoop as their native scheduling systems, which may
not be a feasible option for most computing facilities. Fi-
nally, Amazon’s Elastic MapReduce [1] enables the alloca-
tion of Hadoop clusters on the fly using a Web service API
on Amazon’s cloud resources. It is similar to myHadoop in
the sense that Hadoop clusters are launched on-demand, and
that it uses an external location for data persistence (Ama-
zon’s Simple Storage Service - S3). However, the difference
lies in the fact that it uses Amazon’s cloud resources, rather
traditional HPC resources via batch scheduling systems.

6. CONCLUSIONS & FUTURE WORK
In this paper, we described myHadoop, a framework for con-
figuring Hadoop on-demand on traditional HPC resources,
using standard batch scheduling systems such as TORQUE
(PBS) or the Sun Grid Engine (SGE). With the help of my-
Hadoop, users with pre-existing Hadoop codes do not need
dedicated Hadoop clusters to run their jobs. Instead, they
can leverage traditional HPC resources that they otherwise
have access to, without needing root-level access. myHadoop
enables multiple users to simultaneously execute Hadoop
jobs on shared resources without interfering with each other.
It supports a regular non-persistent mode where the local
file system on each compute node is used as the data di-
rectory for the Hadoop Distributed File System (HDFS),
and also a persistent mode where the HDFS can be hosted
on a shared file system such as Lustre. In this paper, we
discussed the performance of both the persistent and non-
persistent modes with the help of a few usage scenarios, and
provided recommendations on when myHadoop would be a
suitable option (or otherwise). myHadoop is open source

and freely available for download via SourceForge [4].

The current release of myHadoop is early alpha, and several
potential improvements remain to be done. In particular, we
are planning on adding support for other schedulers such as
Condor [12]. Currently, the support for the persistent mode
is quite basic. In particular, one shortcoming of the persis-
tent mode is that a user can only instantiate a new Hadoop
instance in the future with the same number of nodes as their
first instance that was initialized, if the user wants to re-use
any data from previous runs. A desirable feature is to be
able to dynamically re-configure the number of nodes, and
also re-balance the data between the nodes. Another short-
coming is that the data in the shared persistent location is
only accessible via HDFS commands - which implies that a
user must instantiate a Hadoop cluster via myHadoop if any
data needs to be exported on to the native file system. We
are planning on implementing a set of command-line utili-
ties that help write and read data to and from the persistent
location being used by myHadoop’s HDFS.

7. ACKNOWLEDGEMENTS
This work is funded by the National Science Foundation’s
Cluster Exploratory (CluE) program under award number
0844530, and the San Diego Supercomputer Center under
a Triton Resource Opportunity (TRO) award. We wish to
thank Jim Hayes for his work on building the Rocks roll
[25] for myHadoop, and making it available for general ac-
cess on SDSC’s Triton resource, Shava Smallen for providing
access to UC Grid resources for SGE integration, and Ron
Hawkins, for participating in architecture discussions.

8. REFERENCES
[1] Amazon Elastic MapReduce. 2011.

http://aws.amazon.com/elasticmapreduce/.

[2] Apache Hadoop on Demand (HOD). 2011.
http://hadoop.apache.org/common/docs/
r0.20.2/hod user guide.html.

[3] Magellan: NERSC Cloud Testbed. 2011.
http://www.nersc.gov/nusers/systems/magellan/.

[4] myHadoop on SourceForge. 2011.
http://sourceforge.net/projects/myhadoop/.

[5] NCSA Abe Cluster Technical Summary. 2011.
http://www.ncsa.illinois.edu/UserInfo/
Resources/Hardware/Intel64Cluster/TechSummary/.

[6] Running Hadoop-Blast in Distributed Hadoop. 2011.
http://salsahpc.indiana.edu/tutorial/
hadoopblastex3.html.

[7] The Sun Grid Engine (SGE), 2011.
http://wikis.sun.com/display/GridEngine/Home.

[8] The Triton Compute Cluster. 2011.
http://tritonresource.sdsc.edu/cluster.php.

[9] TORQUE Resource Manager, 2011.
http://www.clusterresources.com/products/torque-
resource-manager.php.

[10] S. Altschul, W. Gish, W. Miller, E. Myers, and
D. Lipman. Basic local alignment search tool. Journal
of molecular biology, 215(3):403–410, 1990.

[11] Apache Software Foundation. Hadoop MapReduce.
2011. http://hadoop.apache.org/mapreduce.

[12] J. Basney, M. Livny, and T. Tannenbaum. High
Throughput Computing with Condor. In HPCU news,

volume 1(2), June 1997.

[13] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, and W. Su. Myrinet: A
gigabit-per-second local area network. Micro, IEEE,
15(1):29–36, 2002.

[14] D. Borthakur. The hadoop distributed file system:
Architecture and design, 2007. Apache Software
Foundation.

[15] C. Catlett. The philosophy of TeraGrid: building an
open, extensible, distributed TeraScale facility. In 2nd
IEEE/ACM Intl Symp on Clust Comp & the Grid,
2005.

[16] N. R. Center. Disco MapReduce Framework. 2011.
http://discoproject.org.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI’04: 6th
Symp on Operating System Design and Impl, 2004.

[18] J. Ekanayake. Hadoop as a Batch Job using PBS.
2008. http://jaliyacgl.blogspot.com/2008/08/hadoop-
as-batch-job-using-pbs.html.

[19] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. ACM SIGOPS Operating Sys Rev,
37(5):29–43, 2003.

[20] T. Gunarathne, T. Wu, J. Qiu, and G. Fox. Cloud
computing paradigms for pleasingly parallel
biomedical applications. In 19th ACM Intl Symp on
High Perf Dist Comp, pages 460–469. ACM, 2010.

[21] Y. Inc. Hadoop at Yahoo! 2011.
http://developer.yahoo.com/hadoop.

[22] S. Krishnan, C. Baru, and C. Crosby. Evaluation of
MapReduce for Gridding LIDAR Data. In 2nd IEEE
Intl Conf on Cloud Comp Tech and Science, 2010.

[23] S. Krishnan, V. Nandigam, C. Crosby, M. Phan,
C. Cowart, C. Baru, and R. Arrowsmith.
OpenTopography: A Services Oriented Architecture
for Community Access to LIDAR Topography. SDSC
TR-2011-1, San Diego Supercomputer Center, 2011.

[24] B. Langmead, M. Schatz, J. Lin, M. Pop, and
S. Salzberg. Searching for SNPs with cloud
computing. Genome Biol, 10(11):R134, 2009.

[25] P. Papadopoulos, M. Katz, and G. Bruno. NPACI
Rocks: Tools and techniques for easily deploying
manageable linux clusters. In cluster, page 258. IEEE
Computer Society, 2001.

[26] G. Pfister. An introduction to the InfiniBand
architecture. High Perf Mass Storage and Parallel
I/O, pages 617–632, 2001.

[27] J. S. Sarma. Hadoop - Facebook Engg. Note. 2011.
http://www.facebook.com/note.php?note id=16121578919.

[28] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In 1st USENIX
Conf on File and Storage Tech, pages 231–244, 2002.

[29] P. Schwan. Lustre: Building a file system for
1000-node clusters. In 2003 Linux Symp, 2003.

[30] M. Stonebraker. The case for shared nothing.
Database Engineering Bulletin, 9(1):4–9, 1986.

[31] C. Zhang and H. De Sterk. CloudBATCH: A Batch
Job Queuing System on Clouds with Hadoop and
HBase. In 2nd IEEE Intl Conf on Cloud Comp Tech
and Science, 2010.

