
Εκπαίδευση στο πλαίσιο του έργου «Εγκατάσταση κόμβου GRID στο Πολυτεχνείο Κρήτης»

2009/05/07

The TORQUE Resource ManagerThe TORQUE Resource Manager

Vangelis KoukisVangelis Koukis

Computing Systems Laboratory Computing Systems Laboratory –– ICCSICCS

vkoukis@cslab.ece.ntua.grvkoukis@cslab.ece.ntua.gr

What is TORQUE?What is TORQUE?

� TORQUE: Terascale Open-source Resource and

QUEue manager

�A batch scheduling system for clusters

• Based on *PBS (PBS, OpenPBS, PBS Pro), NASA, early ’90s

�Managing local resources

• Compute nodes, perhaps multicore systems

• Allocates cores and memory to jobs

�And job queues

• Accepts job submission requests

• Manages jobs in queues

• Creates needed processes, responsible for

starting/suspending/killing/jobs

The lifetime of a job on the GridThe lifetime of a job on the Grid

RB/WMS CEUI

LRMS
(Torque / PBS)

allocation of

local resources

Worker Node

What exactly is a compute cluster?What exactly is a compute cluster?

Frontend

Compute Nodes

C
lu

s
t
e
r
 In

t
e
r
c
o
n
n
e
c
t

What exactly is a compute cluster?What exactly is a compute cluster?

� No single definition but:

� Many, similar compute nodes that share:

�Administrative authority

�User accounts and privileges

�Home directories for users (/home/user1)

• Although local scratch space is usually available

� Combined with a scheduling system

�e.g., TORQUE and MAUI

� Used for running parallel applications

�e.g., combined with an MPI implementation

Using TORQUE locallyUsing TORQUE locally

Submit host
(frontend)

Compute Nodes
(WNs)

pbs_mom

pbs_mom

pbs_mom

pbs_server

PBS Server
(CE)

maui

gLite

qstat

qsub

Basic Job ManagementBasic Job Management

� qsub
�submit a job to a queue

� qdel
�cancel/delete a job

� qstat
�view queue and job status

� qsig
�signal a job (e.g. SIGTERM, SIGUSR1)

� qhold / qrls
�hold / release a job

qsubqsub: : Job Submission (1)Job Submission (1)

� Submit a job script to a queue

�qsub –q tuc –I –k oe –l nodes=4 –N testjob1

� -q queue: the queue to submit to (“tuc”)

� -I: request an interactive job

�gets scheduled normally, but with I/O

redirection to user’s terminal

� -l nodes=node_specification

�More on that later on

qsubqsub: : Job Submission (2)Job Submission (2)

� Submit a job script to a queue

�qsub –q tuc –I –k oe –l nodes=4 –N testjob1

� -N jobname

�Define a nice human readable name for the

job

� -k oe

�Important: Keep both standard output and

standard error on the execution host

�Useful, because UI shares homes with WNs

for local accounts

qdelqdel: : Job Cancellation / DeletionJob Cancellation / Deletion

� Remove a job from the queue

�kill it if it’s already running

� Sends a SIGTERM first, then a SIGKILL

� qdel –W 3 1122

�Delete job with job id 1122

�Wait 3 seconds between SIGTERM and SIGKILL

qstatqstat: : Queue / Job StatisticsQueue / Job Statistics

� Show processes currently in the queue

� Along with their state and attributes
�E: Job is exiting after having run

�H: Job is held

�Q: Job is queued, eligible to run or be routed

�R: Job is Running

�T: Job is in transition (being moved to a new
location)

�W: Job is waiting for its requested execution
time to be reached

� S: Job is suspended

� More arguments: -a [all jobs], -f [full status]

qalterqalter: : Alter Job attributesAlter Job attributes

� Alters job attributes

�Either while in the queue or running

�E.g. maximum wallclock or CPU time

� Job will be cancelled if its new attributes
do not fit queue requirements

qsigqsig: : Signal a Running JobSignal a Running Job

� Sends a UNIX signal to a running job

� E.g., SIGINT, or a user-defined signal

� User-defined signals (SIGUSR1/2) used to
invoke user-specified reactions
�Output progress statistics to a predefined file

�Perform internal checkpointing, to resume
work from this point later on

� Special signals: “suspend”, “resume”
�suspend: send SIGTSTP (^Z), then SIGSTOP

�resume: send SIGCONT

qsubqsub: : Specifying resources (1)Specifying resources (1)

� -l resource1=value1,resource2=value2

� CPU resources:

�-l nodes=X

�-l nodes=X1:ppn=Y1+X2:ppn=Y2

�-l nodes=X1:ppn=Y1:myrinet

�-l nodes=wn030.grid.tuc.gr

+wn002.grid.tuc.gr

qsubqsub: : Specifying resources (2)Specifying resources (2)

� -l resource1=value1,resource2=value2

� Either while in the queue or running

�E.g. maximum wallclock or CPU time

� Job will be cancelled if it’s no longer
runnable based on its new attributes

qsubqsub: : SpecifiyingSpecifiying dependenciesdependencies

� -W depend=type[:argument…]

� E.g., start the job:
�Any time after j has started:

-W depend=after:j

�Only if j completes successfully:
-W depend=afterok:j

�Only if j fails:
-W depend=afternotok:j

� More options in the manual page for qsub
�man qsub

PBS Scripts (1)PBS Scripts (1)

� Used as input for qsub
�Commonly a simple bash script

� Deals with job initialization and
finalization

� Can contain PBS-specific comments
�Begin with “#PBS”

�No need to specify long argument lists to
qsub

� Runnable directly at the command line

PBS Scripts (2)PBS Scripts (2)

� A simple example:

#!/bin/bash

#PBS -l nodes=4:ppn=2

#PBS -l walltime=01:00

#PBS -q tuc

#PBS -k oe

echo Running on `hostname`

echo The PBS node file contains:

if [! -z $PBS_NODEFILE]; then

cat $PBS_NODEFILE

else

echo No $PBS_NODEFILE found.

fi

Job ArraysJob Arrays

� Single script, submitted in multiple jobs

� -t argument to qsub:

�-t index_range[,index_range]

� For example

�qsub –t 1-100 array.pbs

�qsub –t 1,3,5,7,10-15 array.pbs

� Each job can find its place in the array by
examining $PBS_ARRAYID

Multiprocessor JobsMultiprocessor Jobs

� Job has been allocated a number of
nodes, now what?

�Use the TORQUE Task Management (TM)

interface to spawn peer tasks on remote

nodes

� pbsdsh: TORQUE/PBS-specific rsh/ssh
replacement

� TORQUE-aware MPI implementation

�OpenMPI has excellent support

Multiprocessor Jobs: Multiprocessor Jobs: pbsdshpbsdsh

� TORQUE-aware rsh/ssh replacement

� pbsdsh command

�Discovers set of nodes in job

�Execute command on all tasks

� Useful arguments
�-h host: execute on a single host

�-u: execute command once on each host
• Ignores number of allocated processors per node

� Careful! command must be an absolute
path: e.g., `pwd`/task.sh

HandsHands--on Time!on Time!

�http://www.cslab.ece.ntua.gr/

tuc/torque.html

Multiprocessor Jobs: MPIMultiprocessor Jobs: MPI

� OpenMPI has full integration with TORQUE

�Based on TM interface

�Determines number and placement of

processors automatically

• examines environment variable

• Queries TORQUE through TM interface

� Proper signaling to MPI job

� Proper job initialization, suspension, and
termination

� Correct accounting, real CPU time

Multiprocessor Jobs: ControlMultiprocessor Jobs: Control

� No unrestricted rsh/ssh between nodes

� TORQUE stays in control of processor
allocation and CPU time usage

� Linux cpusets used to minimize process
interference between unrelated jobs

�Even if process fork()s, all related processes

time-share

� Enables user to oversubscribe allocated
processors, for testing purposes

�number of MPI peers > number of processors

Torque accounting / logsTorque accounting / logs

� TORQUE keeps detailed logs under
/var/spool/pbs

� PBS server: server_logs/, server_priv/

� PBS mom: mom_logs/, mom_priv/

� Various debug levels settable via qmgr

� Every state transition gets logged and can
be analyzed during troubleshooting

